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Outline

1. Hashing Algorithms for Large-Scale Learning

2. Hashing algorithms for indexing and efficient near neighbor search
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Hashing algorithms for machine learning

Hashing + logistic regression and hashing + DNN can often be nice combinations:

• Hashing for dealing with ultra-high-dimensional data

• Hashing for building compact (e.g., single machine) learning models

• Hashing for building more complex (and more accurate) learning models

• Hashing as a feature engineering tool

• Hashing for building nonlinear learning models at linear cost
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One Major Source of High-Dimensional Data: Histogram

Histogram-based features are very popular in practice, for example, natural language

processing (NLP) and computer vision.

It can be viewed as high-dimensional vector: ui ≥ 0, i = 1, 2, ..., D
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The size of the space D can often be extremely large. For example, D can be the total

number of words, or combinations of words (or characters, or visual words).

In search industry, D = 264 is often used, for convenience.
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An Example of Text Data Representation by n-grams

Each document (Web page) can be viewed as a set of n-grams.

For example, after parsing, a sentence “today is a nice day” becomes

• n = 1: {“today”, “is”, “a”, “nice”, “day”}

• n = 2: {“today is”, “is a”, “a nice”, “nice day”}

• n = 3: {“today is a”, “is a nice”, “a nice day”}

It is common to use n ≥ 5.

Using n-grams generates extremely high dimensional vectors, e.g., D = (105)n.

(105)5 = 1025 = 283, although in current practice, it seems D = 264 suffices.

As a highly successful practice, n-gram representations have many variants, e.g., word

n-grams, character n-grams, skip n-grams, etc.
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Webspam: A Small Example of n-gram Data

Task: Classifying 350K documents into spam or non-spam (binary classification).

Dim. (D) Training Time Accuracy

1-gram + linear SVM 254 20 sec 93.30%

3-gram + linear SVM 16,609,143 200 sec 99.6%

3-gram + kernel SVM 16,609,143 About a Week 99.6%

(Character) 1-gram : Frequencies of occurrences of single characters.

(Character) 3-gram : Frequencies of occurrences of 3-contiguous characters.

—————-

Ref: P. Li, et. al. Hashing Algorithms for Large-scale Learning, NIPS 2011
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Challenges with Using High-Dimensional Features

• High dimensionality This may lead to large & costly (in both training and testing)

statistical models and create large search space.

• High storage cost If the (expanded) features are fully materialized, they might be

way too large to store/transmit, even for very sparse data.

• Binary vs. non-binary While in NLP and search it is popular to use very

high-dimensional and binary representations, the current mainstream practice in (e.g.,)

computer vision is to use non-binary features. In general, binary representations require a

much large space (dimensionality).
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Minwise Hashing for Binary (0/1) Data

A binary (0/1) vector⇐⇒ a set (locations of nonzeros).

Consider two sets S1, S2 ⊆ Ω = {0, 1, 2, ..., D − 1} (e.g., D = 264)

f
2

f
1 a

f1 = |S1|, f2 = |S2|, a = |S1 ∩ S2|.

The resemblance R is a popular measure of set similarity

R =
|S1 ∩ S2|
|S1 ∪ S2|

=
a

f1 + f2 − a
. (compared to “cosine”

a√
f1f2

)
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Minwise Hashing: Standard Algorithm in the Context of Searc h

The standard practice in the search industry: (e.g., Broder et al 1997)

Suppose a random permutation π is performed on Ω, i.e.,

π : Ω −→ Ω, where Ω = {0, 1, ..., D − 1}.

An elementary probability argument shows that

Pr (min(π(S1)) = min(π(S2))) =
|S1 ∩ S2|

|S1 ∪ S2|
= R.
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An Example

D = 5. S1 = {0, 3, 4}, S2 = {1, 2, 3}, R = |S1∩S2|
|S1∪S2|

= 1
5 .

One realization of the permutation π can be

0 =⇒ 3

1 =⇒ 2

2 =⇒ 0

3 =⇒ 4

4 =⇒ 1

π(S1) = {3, 4, 1} = {1, 3, 4}, π(S2) = {2, 0, 4} = {0, 2, 4}

In this example, min(π(S1)) 6= min(π(S2)).
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Minwise Hashing in 0/1 Data Matrix
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min(π(S1)) = 2, min(π(S2)) = 0, min(π(S3)) = 0
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An Example with k = 3 Permutations

Input: sets S1, S2, ...,

Hashed values for S1 : 113 264 1091

Hashed values for S2 : 2049 103 1091

Hashed values for S3 : ...

....
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Minwise Hashing Estimator

After k permutations, π1, π2, ..., πk , one can estimate R without bias:

R̂M =
1

k

k
∑

j=1

1{min(πj(S1)) = min(πj(S2))},

Var
(

R̂M

)

=
1

k
R(1−R).
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Issues with Minwise Hashing and Solutions

1. Expensive storage (and computation) : In the standard practice, each hashed value

was stored using 64 bits.

Solution: b-bit minwise hashing by using only the lowest b bits.

2. How to do linear kernel learning :

Solution: One can show that b-bit minwise hashing results in positive definite (PD) linear

kernel matrix. The data dimensionality is reduced from 264 to 2b.

3. Expensive and energy-consuming (pre)processing for k permutations :

Solution: One permutation hashing, which is even more accurate.
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Integrating b-Bit Minwise Hashing for (Linear) Learning

Very simple :

1. Apply k independent random permutations on each (binary) feature vector xi and store

the lowest b bits of each hashed value. The storage costs nbk bits.

2. At run-time, expand a hashed data point into a 2b × k-length vector, i.e. concatenate k

2b-length vectors. The new feature vector has exactly k 1’s.
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An Example with k = 3 Permutations

Input: sets S1, S2, ...,

Hashed values for S1 : 113 264 1091

Hashed values for S2 : 2049 103 1091

Hashed values for S3 : ...

....
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Observation : the estimator can be written as an inner product

R̂M =
1

k

k
∑

j=1

1{min(πj(S1)) = min(πj(S2))}

=
1

k

k
∑

j=1

D
∑

i=1

1{min(πj(S1)) = i}×1{min(πj(S2) = i}}

If D is too large, we take the lowest b bits and the space is only of size 2b.

Ref: P. Li, et. al. Hashing Algorithms for Large-scale Learning, NIPS 2011
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Suppose D = 4. Then we can expand each number in {0, 1, 2, 3} as a vector of length 4.

0 =⇒ [1 0 0 0], 1 =⇒ [0 1 0 0], 2 =⇒ [0 0 1 0], 3 =⇒ [0 0 0 1]

Then the indicator function can be evaluated using inner product between two vectors:

1{2 = 3} =< [0 0 1 0], [0 0 0 1] >= 0

1{1 = 1} =< [0 1 0 0], [0 1 0 0] >= 1
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An Example with k = 3 Permutations and b = 2 Bits

For set (vector) S1: (Original high-dimensional binary feature vector)

Hashed values : 113 264 1091

Binary : 1110001 100001000 10001000011

Lowest b = 2 bits : 01 00 11

Decimal values : 1 0 3

Expansions (2b) : 0100 1000 0001

New binary feature vector : [0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1]× 1√
3

Same procedures on sets S2, S3, ...
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Experiments on Webspam (3-gram) Data: Testing Accuracy
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Spam: Accuracy

• C is the l2 regularization parameter of linear SVM.

• Dashed: using the original data (24GB disk space).

• Solid: b-bit hashing. Using b = 8 and k = 200 achieves about the same test accuracies

as using the original data. Space: 70MB (350000× 200)
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What Is Happening?

Dim. (D) Training Time Accuracy

1-gram + linear SVM 254 20 sec 93.30%

3-gram + linear SVM 16,609,143 200 sec 99.6%

3-gram + kernel SVM 16,609,143 About a Week 99.6%

1. By engineering:

Webspam, unigram, 254 dim =⇒3-gram, 16M dim, 4000 nonzeros per doc

Accuracy: 93.3% =⇒ 99.6%

2. By probability/statistics:

16M dim, 4000 nonzeros =⇒ k = 200 nonzeros, 28 × k = 51200 dim

Accuracy: 99.6% =⇒ 99.6%

Hashing can be viewed as part of feature engineering
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Training Time
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• They did not include data loading time (which is small for b-bit hashing)

• The original training time is about 200 seconds.

• b-bit minwise hashing needs about 3 ∼ 7 seconds (3 seconds when b = 8).
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Testing Time
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However, here we assume the test data have already been processed.
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Comparison with Very Sparse Random Projections

8-bit minwise hashing (dashed, red ): k = 200

Sparse random projections and variants: k = 104 ∼ 106.
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The Problem of Expensive Preprocessing

500 permutations (more are needed for near neighbor search) on the entire data can be very

expensive. A serious issue when the new testing data have not been processed.

Two solutions:

1. Parallel solution by GPUs : Achieved up to 100-fold improvement in speed.

Ref: Li, Shrivastava, König, GPU-Based Minwise Hashing, WWW’12 (poster)

2. One Permutation Hashing : (Recommended for learning and search)

Ref: Li, Owen, Zhang, One Permutation Hashing, NIPS 2012

Ref: Shrivastava and Li, Densified One Permutation Hashing ... , ICML 2014
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Intuition: Minwise Hashing Ought to Be Wasteful

Original Data Matrix
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Only store the minimums and repeat the process k (e.g., 500) times.
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One Permutation Hashing

S1, S2, S3 ⊆ Ω = {0, 1, ..., 15} (i.e., D = 16). The figure presents the permuted sets as

three binary (0/1) vectors:

π(S1) = {2, 4, 7, 13}, π(S2) = {0, 6, 13}, π(S3) = {0, 1, 10, 12}
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One permutation hashing: divide the space Ω evenly into k = 4 bins and select the

smallest nonzero in each bin.

Ref: P. Li, A. Owen, C.-H. Zhang, One Permutation Hashing, NIPS 2012
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Two major tasks:

• Theoretical analysis and estimators

• Practical strategies to deal with empty bins, should they occur. There are different

strategies for different applications (learning or search).
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Two Definitions

Recall: the space is divided evenly into k bins

# Jointly empty bins: Nemp =
k
∑

j=1

Iemp,j

# Matched bins: Nmat =
k
∑

j=1

Imat,j
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where Iemp,j and Imat,j are defined for the j-th bin, as

Iemp,j =







1 if both π(S1) and π(S2) are empty in the j-th bin

0 otherwise

Imat,j =















1 if both π(S1) and π(S1) are not empty and the smallest element

of π(S1) matches the smallest element of π(S2), in the j-th bin

0 otherwise

———————————

Nemp =
k
∑

j=1

Iemp,j , Nmat =
k
∑

j=1

Imat,j
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Results for the Number of Jointly Empty Bins Nemp

Notation :

f1 = |S1|, f2 = |S2|, a = |S1 ∩ S2|, f = |S1 ∪ S2| = f1 + f2 − a.

Expectation:
E (Nemp)

k
=

f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
≤
(

1− 1

k

)f

Variance:
V ar (Nemp)

k2
=

1

k

(

E(Nemp)

k

)(

1− E(Nemp)

k

)

−
(

1− 1

k

)











f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j





2

−
f−1
∏

j=0

D
(

1− 2
k

)

− j

D − j







————-

Perhaps too complicated!
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Impact of Empty Bins

Approximation in sparse data , i.e., f = |S1 ∪ S2| = f1 + f2 − a≪ D.

Expectation:
E (Nemp)

k
=

(

1− 1

k

)f (

1−O

(

f2

kD

))

Implication:
E(Nemp)

k ≈
(

1− 1
k

)f ≈ e−f/k.

f/k = 5 =⇒ E(Nemp)
k ≈ 0.0067 (negligible).

f/k = 1 =⇒ E(Nemp)
k ≈ 0.3679 (noticeable).

We must find a solution to deal with empty bins.
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Probability distribution function of Nemp:

Pr (Nemp = j) =

k−j
∑

s=0

(−1)s k!

j!s!(k − j − s)!

f−1
∏

t=0

D
(

1− j+s
k

)

− t

D − t

in case some readers are curious.
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An Unbiased Estimator

Estimator : R̂mat =
Nmat

k −Nemp

Expectation : E
(

R̂mat

)

= R (slightly surprising)

Variance: V ar
(

R̂mat

)

(Recall f = |S1 ∪ S2|)

=
R(1−R)

k

(

E

(

1

1−Nemp/k

)(

1 +
1

f − 1

)

− 1

f − 1

)

<
R(1−R)

k
(Variance of original minwise hashing)
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Summary of Advantages of One Permutation Hashing
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• Computationally much more efficient and energy-efficient.

• Testing unprocessed data is much faster, crucial for user-facing applications.

• Implementation is easier, from the perspective of random number generation, e.g., storing

a permutation vector of length D = 109 (4GB) is not a big deal.
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One Permutation Hashing for Learning

Almost the same as k-permutation hashing, but we must deal with empty bins *.

Zero coding : Encode empty bins as (e.g.,) 00000000 in the expanded space.

This simple strategy often works well for learning (but not for near neighbor search).
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Zero Coding Example

One permutation hashing with k = 4 and b = 2 (* indicates empty bin)

For set (vector) S1:

Original hashed values (k = 4) : 12013 25964 20191 ∗
Original binary representations :

010111011101101 110010101101100 100111011011111 ∗
Lowest b = 2 binary digits : 01 00 11 ∗
Corresponding decimal values : 1 0 3 ∗
Expanded 2b = 4 binary digits : 0100 1000 0001 0000

New feature vector : [0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]× 1√
4− 1

Same procedures on sets S2, S3, ...
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Experimental Results on Webspam Data
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One permutation hashing (zero coding) is even slightly more accurate than k-permutation

hashing (at merely 1/k of the original cost).
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Limitation of One Permutation Hashing

One permutation hashing can not be directly used for near neighbor search by building hash

tables because empty bins do not offer indexing capability.

In other words, because of these empty bins, it is not possible to determine which bin value to

use for bucketing.
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General Hashing Table Scheme for Fast Near Search

00  10

11  10
11  11

00  00
00  01

Index Data Points

11  01

8, 13, 251
 5, 14, 19, 29
(empty)

33, 174, 3153
 7, 24, 156

 61, 342

00  10

11  10
11  11

00  00
00  01

Index Data Points

11  01

8

17, 36, 129
2, 19, 83

7, 198

56, 989
,9, 156, 879

4, 34, 52, 796

When a new data vector arrives, it is hashed to binary code and falls into one bucket in each

table. The candidates for its near neighbors are the union of data points from the buckets.

If part of the code is missing (due to empty bins), then we must “guess” the missing part.
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Neither Zero-coding nor Random-Coding Would Work

Zero-coding, or “empty-equal” ( EE), scheme : If empty bins dominate, then two sparse

vectors will become artificially “similar”.

Random-coding, or “empty-not-equal” ( ENE), scheme : By coding an empty bin randomly,

again if empty bins dominate, then two sparse vectors which are similar in terms of the

original resemblance may artificially become not so similar.
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One Proposal: Borrowing from Neighboring Non-Empty Bins

The original one permutation hashing (OPH) is densified to become H:

π(S
2
)

π(S
1
)

1

1

1

1

1

1 1

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0  0  0  0  0     0  1  0  0  0   0   0   0       1         0   1   0    0       1   0

0  0  0  0  0     1  0  0  0  0   0        0   1   0        1   0   0    0   0   0   0

by borrowing hashed values from neighboring non-empty bins.

OPH(π(S
1
)) = [ E, 1, E, 2, 0, 1 ]            H(π(S

1
)) = [ 1+C, 1, 2+C, 2, 0, 1 ]

OPH(π(S
2
)) = [ E, 1, E, 0, 0, E ]           H(π(S

2
)) = [ 1+C, 1, C, 0, 0, 1+2C]

C ≥ D/k + 1 is a constant for avoiding undesired collision.

Theorem : Pr (Hj(π(S1)) = Hj(π(S2))) = R

Ref: Shrivastava and Li, Densifying One Permutation Hashing ..., ICML’14
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Experiments for Near Neighbor Search
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1-permutation with densification (“ Proposed ”) matches the original minwise hashing .
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Similarity for Non-Binary Data

For two n-dim vectors u and v, we can define their correlation (cosine) similarity:

Linear (Cosine) ρ = ρ(u, v) =

∑n
i=1 uivi

√
∑n

i=1 u
2
i

√
∑n

i=1 v
2
i

and the radial basis function (RBF) kernel (where γ > 0 is a crucial tuning parameter):

RBF RBF (u, v; γ) = e−γ(1−ρ)

For small datasets, the RBF kernel can be very useful as it often achieves good accuracies.

For example, we can directly use the all pairwise kernel matrix if it is small enough.
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The Generalized Min-Max (GMM) Kernel

Data Transformation : Consider the original data vector ui, i = 1 to n. We define the

following transformation, depending on whether an entry ui is positive or negative:






ũ2i−1 = ui, ũ2i = 0 if ui > 0

ũ2i−1 = 0, ũ2i = −ui if ui ≤ 0

For example, n = 2 and u = [−5 3], the transformed data vector becomes ũ = [0 5 3 0].

Generalized Min-Max (GMM) Kernel :

GMM(u, v) =

∑2n
i=1 min(ũi, ṽi)

∑2n
i=1max(ũi, ṽi)

GMM is an effective measure of data similarity, as shown through an extensive experimental

study on kernel SVM classification.
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An Experimental Study on Kernel SVMs and Public Datasets

We report test classification accuracies for the linear SVM, kernel SVM with RBF, and kernel

SVM with GMM, at the best l2-regularization C values.

For the RBF kernel, we exhaustively experimented with 58 different values of γ ∈ {0.001,

0.01, 0.1:0.1:2, 2.5, 3:1:20 25:5:50, 60:10:100, 120, 150, 200, 300, 500, 1000}.
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Test classification accuracies using kernel SVMs
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Typically, both GMM and RBF kernels substantially improve linear SVM. C is the

l2-regularization parameter of SVM. For the RBF kernel, we report the result at the best γ

value for every C value.

For most datasets, the tuning-free GMM kernel outperforms the best-tuned RBF kernel.
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Theory of the GMM Kernel

Given n-dimensional data vectors: x and y, we first define xi = xi+ − xi−, where

xi+ =







xi if xi ≥ 0

0 otherwise
, xi− =







−xi if xi < 0,

0 otherwise

Then we compute GMM as follows:

GMM(x, y) =

∑n
i=1 [min(xi+, yi+) + min(xi−, yi−)]

∑n
i=1 [max(xi+, yi+) + max(xi−, yi−)]

△
= gn(x, y)

Two fundamental questions , as n→∞ (i.e., as dimensionality is large),

1. What is the limit of gn(x, y)?

2. How fast does it converge to the limit?

Why do we care?
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The Cosine Similarity

In web search and machine learning, arguably the most commonly adopted measure of

similarity might be the “cosine”:

Cos(x, y) =

∑n
i=1 xiyi

√
∑n

i=1 x
2
i

∑n
i=1 y

2
i

△
= cn(x, y)

The popularity of cosine can be explained by the fact that, if the entries of the data vectors are

independent normally distributed, then cn(x, y) converges to the data population correlation.

More precisely, if each coordinate (xi, yi) is an iid copy of (X, Y ), where

(X, Y )T ∼ N



0,Σ =





σ2
X ρσXσY

ρσXσY σ2
Y









then as n→∞, cn(x, y) converges in distribution to a normal

n1/2 (cn − ρ)
D
=⇒ N

(

0, (1− ρ2)2
)
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Normality Assumption is Crucial for Cosine

Theorem : Consider n iid samples (xi, yi) ∼ tΣ,ν , i.e., a bivariate t-distribution with

covariance matrix Σ and ν degrees of freedom, where ν > 4 and Σ =





1 ρ

ρ 1



,

−1 ≤ ρ ≤ 1. As n→∞, cn(x, y) =
∑

n
i=1

xiyi√∑
n
i=1

x2

i

∑
n
i=1

y2

i

converges in distribution to a

normal:

n1/2 (cn − ρ)
D
=⇒ N

(

0,
ν − 2

ν − 4
(1− ρ2)2

)

In other words, it is only safe to use cosine if the data are very close to normal (large ν). If cn

does not converge, then it is not a meaningful measure. If cn converges but the rate is slow

and the variance is large (or does not exist), then it is not reliable to use cn.
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GMM Under t-Distribution

Consider n iid samples (xi, yi) ∼ tΣ,ν , where ν > 2 and Σ =





1 ρ

ρ 1



,−1 ≤ ρ ≤ 1.

As n→∞,

gn −→
1−

√

(1− ρ)/2

1 +
√

(1− ρ)/2

———————–

If the degree of freedom ν →∞, then tΣ,ν converges to normal with covariance Σ.
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GMM Under t-Distribution

Theorem: Consider n iid samples (xi, yi) ∼ tΣ,ν , where ν > 2 and Σ =





1 ρ

ρ 1



,

−1 ≤ ρ ≤ 1. As n→∞, then the GMM kernel gn(x, y) converges in distribution to a

normal:

n1/2

(

gn −
1−

√

(1− ρ)/2

1 +
√

(1− ρ)/2

)

D
=⇒ N

(

0,
V

H4

8

π

1

ν − 2

Γ2(ν/2)

Γ2(ν/2− 1/2)

)

where Γ(.) is gamma function, H = 2
π (1 + sinα), α = sin−1

(

√

1/2− ρ/2
)

, and

V = 4
π3 sin

2 α× (3π − 8 cosα+ 2 sin 2α+ π cos 2α− 8α sinα− 4α cos 2α).

————————-

gn converges as long as ν ≥ 1. The variance is bounded if ν > 2.

Ref: P. Li and C.-H. Zhang Theory of the GMM Kernel, WWW 2017
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Estimator of ρ from GMM

gn(x, y)→ 1−
√

(1−ρ)/2

1+
√

(1−ρ)/2
, which provides a robust and convenient way to estimate the

similarity between data vectors:

ρ̂g = 1− 2

(

1− gn
1 + gn

)2

The variance of ρ̂g can be precisely evaluated from results in previous pages.

————-

We visualize variances for comparing the two estimators: ρ̂g and ρ̂c (using cosine).
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ρ̂g can be substantially more accurate than ρ̂c. The theoretical asymptotic variance formula,

despite the complexity of its expression, is accurate when ν is not too close to 2.

Roughly speaking, when ν < 8, it is preferable to use ρ̂g , the estimator based on GMM. Even

when data are perfectly Gaussian, using ρ̂g does not result in too much loss of accuracy.
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GCWS for Hashing the GMM Kernel

The “generalized consistent weighted sampling” (GCWS) provides an effective way to

linearize the nonlinear GMM kernel.

————————–
Input: Data vector xi (i = 1 to n)

Generate vector x̃ in 2n-dim by transforming original data into nonnegative data

For i from 1 to 2n

ri ∼ Gamma(2, 1), ci ∼ Gamma(2, 1), βi ∼ Uniform(0, 1)

ti ← ⌊ log x̃i

ri
+ βi⌋, ai ← log(ci)− ri(ti + 1− βi)

End For

Output: i∗ ← argmini ai, t∗ ← ti∗

———————–

CWS originates from a series of prior studies by Manasse, Ioffe, among others.
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Given two data vectors x and y, one can transform them into nonnegative vectors x̃ and ỹ

and generate random tuples:

(

i∗x̃,j , t
∗
x̃,j

)

and
(

i∗ỹ,j , t
∗
ỹ,j

)

, j = 1, 2, ..., k

The basic probability results of CWS says

Pr
{(

i∗x̃,j , t
∗
x̃,j

)

=
(

i∗ỹ,j , t
∗
ỹ,j

)}

= GMM(x, y)

Just like minwise hashing, this provides a strategy to use GCWS and linear algorithms for

approximating computing the GMM kernel SVMs.
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Hashing + Linear SVM Results on Two Classification Tasks

Solid curves: classification accuracies using GCWS + linear SVM

Dashed curves: classification accuracies using RFF + linear SVM

RFF = Random Fourier Features
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GCWS hashing is substantially more accurate than NRFF hashing at the same sample size k.

A lot of details are skipped.
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Conclusion

1. Minwse hashing is a well-known effective hashing strategy for high-dim binary (0/1) data

2. One permutation hashing (and variants) solved the computational bottleneck of minhash

3. One can use one permutation hashing for both search and machine learning

4. For non-binary data, the GMM kernel is an effective similarity measure and GCWS

hashing is a promising algorithm for large-scale computations with the GMM kernel.
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