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ABSTRACT
Automatic synonym recognition is of great importance for entity-
centric text mining and interpretation. Due to the high language
use variability in real-life, manual construction of semantic resources
to cover all synonyms is prohibitively expensive and may also re-
sult in limited coverage. Although there are public knowledge bases,
they only have limited coverage for languages other than Eng-
lish. In this paper, we focus on medical domain and propose an
automatic way to accelerate the process of medical synonymy re-
source development for Chinese, including both formal entities
fromhealthcare professionals and noisy descriptions from end-users.
Motivated by the success of distributed word representations, we
design a multi-task model with hierarchical task relationship to
learn more representative entity/term embeddings and apply them
to synonym prediction. In our model, we extend the classical skip-
gramword embeddingmodel by introducing an auxiliary task “neigh-
boring word semantic type prediction” and hierarchically organize
them based on the task complexity. Meanwhile, we incorporate ex-
isting medical term-term synonymous knowledge into our word
embedding learning framework. We demonstrate that the embed-
dings trained from our proposed multi-task model yield significant
improvement for entity semantic relatedness evaluation, neighbor-
ing word semantic type prediction and synonym prediction com-
pared with baselines. Furthermore, we create a large medical text
corpus in Chinese that includes annotations for entities, descrip-
tions and synonymous pairs for future research in this direction.
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1 INTRODUCTION
Synonymprediction has become an important task for entity-centric
text mining and interpretation [28, 32]. With the aid of synonym
prediction, informal mentions of an entity can be normalized into
its standard form, which will significantly reduce the communi-
cation gap between end-users and downstream applications. Such
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Figure 1: Overview of the proposed hierarchical multi-task
word embedding model. Semantic type knowledge of terms
and term-term synonymous knowledge are both utilized at
different layers in different ways.

examples include but not limited to question & answering [9], in-
formation retrieval [39] and medical diagnosis [20].

From the resource perspective, the major difficulty in synonym
prediction is high variability of language use [5] but low cover-
age of knowledge base (KB) [13], especially for languages other
than English. For example in Chinese medical domain, the concept
“食欲不振 (translation: loss of appetite)” has more than 20 syn-
onyms1, but most of them are missing in existing medical KB [1]
because they are mainly used by patients without much medical
knowledge. Although one can leverage state-of-the-art named en-
tity recognition tools [21] to discover more entities, there is little
work to construct labeled data with annotations for informal de-
scriptions and synonyms for training.

From the modeling perspective, the key question for synonym
prediction is how to learn more effective representations for enti-
ties and descriptions.With a high-quality semantic representation,
any off-the-shelf classifiers can be applied to predict synonymous
relation. Recently, word and entity embedding methods [16, 17, 23,
24], which learn distributed vector representation of words from
a large corpus, have been prevalent in data mining communities.
For English, a few word or character embedding based synonym
prediction methods have been proposed [11, 15, 32].

For example,Wang et al. [32] integrated the semantic type knowl-
edge of terms into word embedding learning and combined the

1“Loss of appetite” synonym examples in Chinese. {胃口差,吃不下东西,胃口不好,
东西吃不下,饭吃不下,不爱吃饭}(translation: no desire for food); {食欲低下,食欲
下降,食欲不太好,缺乏食欲,食欲差,食欲减退}(translation: decreased appetite)
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learned embeddingswith other syntactic features for synonympre-
diction. Although the model leveraged semantic type knowledge,
it ignored the rich relational information among entities. Hasan
et al. [11] used character embeddings as term features and cast the
synonym prediction task as a neural machine translation problem,
in which a target synonym was generated by a bi-directional RNN
given the source term. A limitation of such a complex model is that
it requires a large amount of labeled data (synonym pairs) from
UMLS [18], but there are no such public resources in Chinese.

We hypothesize that incorporating semantic knowledgewill learn
more representative word embeddings, and hence lead to a more
accurate synonymprediction. Herein semantic knowledge includes
both entity’s semantic type information and semantic relatedness
information among entities. Motivated by Søgaard and Goldberg
[29] and Hashimoto et al. [12] who showed the power of predicting
two increasingly complex but related tasks at successive layers, we
propose a hierarchicalmulti-taskword embeddingmodel as shown
in Figure 1. At the lower layer, we introduce an auxiliary task that
predicts neighboring word semantic types given the target word.
At the upper layer, we extend the skip-grammodel [23] to incorpo-
rate existing synonymy knowledge among entities and the lower
level task’s outcomes. Such a hierarchical structure allows us to
not only utilize entities’ semantic types and semantic relation but
mutually enhance the two tasks in the training stage.

Though our methodology is generic, our paper is particularly
motivated by the medical domain in Chinese, which has very high
language use variability, rich semantic knowledge but low knowl-
edge base coverage. Our model can also be applied to any other
domains where external knowledge is tremendous, and language
use variability is very high. Experimental results show that our
model can learnmore representative embeddings and generate bet-
ter accuracy for entity semantic relatedness evaluation, neighbor-
ing word semantic type prediction and synonym prediction.

To summarize, our contributions of this paper are as follows:
• We present a hierarchical multi-task word embedding model

that fully leverages medical domain knowledge. By introduc-
ing an auxiliary task of neighboring word semantic type pre-
diction, we provide more information to the word embedding
objective. We have designed an alternative optimization algo-
rithm for the model and achieved better performance com-
pared with existing methods.

• We collect a large Chinese medical corpus (around 10M sen-
tences) from professional medical textbooks, wikis, and fo-
rums with the purpose of identifying more informal medical
descriptions and synonymous pairs. From the corpus, we iden-
tified and annotated 151K medical entities and descriptions
covering 18 categories with 185K high-quality synonymous
pairs. The annotated dataset will help other researchers to dis-
cover more noisy and informal medical descriptions. To our
best knowledge, this corpus is the first Chinese benchmark
with both entities annotated and synonyms labeled.

• We apply our model to 400M pairs of medical terms and ob-
tained around 1M synonym candidates unseen in any previ-
ous medical resources. The newly discovered synonyms can
enrich existing knowledge bases in Chinese. Furthermore, we
perform a thoughtful error analysis of our approach, which
sheds light on future work in this direction.

2 RELATEDWORK
The importance of synonym extraction has been well recognized
in the biomedical and clinical research community [14, 22]. Early
approaches are typically non-neural based methods. Conventional
techniques include the use of lexical and syntactic features [10],
bilingual alignment-based methods [31] and random walk on the
term graph [25]. For simplicity, we do not cover them in details.

For neural based methods, word embedding techniques have
been widely adopted for synonym prediction [11, 15, 32]. Recently,
there is a growing interest to enhance word embedding by incorpo-
rating domain semantic knowledge.The enhancement either changes
the objective of word embedding by adding relation regularization
during the training phase [34, 35] or takes a post-processing step
on the trained word vectors to accommodate the semantic rela-
tion [7]. For either case, only the term-term relation is used, but
semantic type information of terms is ignored. In Table 1, we sum-
marize the characteristics of related methods and ours.

Table 1: Characteristics for each method. ST means semantic type,
SR means synonymous relation, PP means post-processing and MT
means multi-task. “x” indicates a method has a certain property.

Method ST SR PP MT
Our method x x x
Yu and Dredze [37] x
Wang et al. [32] x x
Faruqui et al. [7] x x

Among all the embedding basedmethods, themost similarworks
to ours are Wang et al. [32] and Yu and Dredze [37]. In Wang et al.
[32], semantic types of terms were incorporated as extra-label in-
formation in the word embedding training process. Such a semi-
supervised method enables word embeddingmodel to consider the
“desired type” when generating the “desired word”, which is a spe-
cial case of multi-task learning with two tasks on the same level. In
ourmodel, we leverage not only the semantic type of terms but also
the term-term synonymous relation. In Yu and Dredze [37], a rela-
tion constrained word embedding model is presented, in which the
term-term synonymous relation is utilized by maximizing the log-
likelihood of all synonymous pairs. Although we also use the syn-
onymous relation among terms, there are two major differences
between our work and theirs. The first difference is that our word
embedding model is a hierarchical multi-task learning framework
with an auxiliary task of predicting semantic types of terms. The
second difference is that we employ a different regularization strat-
egy to enforce the synonymous pairs to share similar embeddings
instead of maximizing their log-likelihood.

Another line of related research is multi-task learning (MTL),
which learns multiple related tasks simultaneously to improve gen-
eralization performance. MTL has been applied to a wide range of
applications including healthcare informatics [8], speech recogni-
tion [30] and natural language processing [12, 29]. In particular,
ourwork ismotivated by Søgaard andGoldberg [29] andHashimoto
et al. [12], which demonstrate the strength of positioning differ-
ent tasks at different layers by considering the linguistic hierar-
chies. For example, Hashimoto et al. [12] built a many-task model



in which tasks were incrementally growing according to their com-
plexity (e.g. POS tagging → entity chunking → dependency pars-
ing). The key difference between their work and ours is that our
hierarchical multi-task model not only solves the two predictive
tasks but also leverages two types of semantic knowledge.

3 METHODOLOGY
In this section, we first describe the original skip-gram model [23],
then explain our hierarchical multi-task word embedding model.
Before introducing them in details, we outline the notation of this
paper in Table 2.

Table 2: Notation table.
Notation Meaning
n number of words in the vocabulary
m number of semantic types
d word embedding dimension
xi ith input word
V Word embedding matrix of size n × d

U Parameters for semantic type prediction
layer with sizem × d

W Parameters for word prediction layer with
size n × (d +m)

C The set of all semantic types with sizem
X The vocabulary of size n
ci The ith semantic type in C
Ai The ith row of matrix A
σ(.) Sigmoid function: σ(x) = 1/(1+ exp(−x))
∥A∥F F -norm of matrix A

3.1 Skip-gram Embedding Model
The goal of skip-gram model [23] is to optimize word embeddings
that are effective to predict neighboring words given the target
word.More formally, it minimizes the following objective function:

Lsд =
1

n

n∑
t=1

∑
−c≤j≤c, j,0

− logp(x j+t |xt ) (1)

where xt is the target word, c is the context window size.The prob-
ability p(xO |xI ) is calculated using the softmax function:

p(xO |xI ) =
exp (VT

xIWxO )∑
x ′∈X exp (VT

xIWx ′)
(2)

Skip-gram model alternatively updates V andW and outputs the
hidden representation V as final word embeddings, where the ith
row of Vi is the word xi ’s embedding vector.

3.2 Hierarchical Multi-task Word Embedding
We extend the skip-gram model [23] by introducing an auxiliary
task of neighboring word semantic type prediction. The key in-
sight is that knowing the semantic types of neighboring words will
benefit neighboring word prediction. For example in the medical
domain, symptom terms are often surrounded by other symptom
terms or disease terms. In this paper, we assume each input sen-
tence has been segmented into a sequence of words/phrases, and

medical entities are annotated.The advantage of the preprocessing
is that we can directly train embeddings for medical entities and
descriptions like other ordinary words.

It is obvious that there are three ways to organize the two tasks:
• Two tasks are organized in parallel and share the common

hidden embedding layer, which amounts to ordinary multi-
task learning with shared hidden layers in neural networks.

• Two tasks are hierarchically organized, wherein the neighbor-
ing word prediction task is positioned lower, and the neigh-
boring word semantic type prediction task is placed upper.

• The hierarchical structure proposed in our paper as shown in
Figure 1. It enables the neighboring word prediction to lever-
age the outcomes of the neighboring word semantic type pre-
diction and the shared word embeddings.

We choose the last structure for two reasons. First, predicting
neighboring words is more complex than predicting their semantic
types. The cardinality of the set of all possible neighboring words
equals to the vocabulary size, which is much larger than that of
semantic types. Second, from a linguistic perspective, knowing the
possible semantic types will help neighboringword prediction task
to focus on the words belonging to those types.

In Figure 2, we show our proposed model framework. During
training, the target word and its neighboring words are first fed
into the input layer to perform embedding lookup. Meanwhile, the
neighboring words are queried against an external medical knowl-
edge base (KB) to determine their corresponding semantic types.
The target word embedding together with its neighboring words’
types will be the task T1’s training data. Note that only the neigh-
boringwordswith valid semantic types (e.g. thewords in red color)
will be fed into T1.The task T2’s input are the concatenation of the
probability distribution of semantic types from T1 and the target
word’s embedding together with the neighboring words. Besides,
the target word’s synonyms are fed into T2 as external knowledge.

3.2.1 T1: Neighboring Word Semantic Type Prediction. Given the
input word and its embedding vector, this task is to predict its
neighboring words’ possible semantic types within a context win-
dow. For example in Figure 2, the input term “runny_nose” is sur-
rounded by two symptom terms and one disease termwith context
window size 7. This model is expected to assign higher probabili-
ties to the semantic types of symptom and disease.

We cast the task T1 as a multi-label classification problem, in
which the number of labels equals the number of semantic types.
Although there are many complicated multi-label classification al-
gorithms [38, 40], we use binary relevance [27], which amounts
to independently training one binary classifier for each label. The
reason for choosing binary relevance is that it is not only compu-
tationally effective but can induce optimal models when the loss
function is a macro-averaged measure [19]. In particular, we min-
imize the following regularized weighted cross entropy objective:

LT 1 = − 1

n

n∑
t=1

|C |∑
j=1

{w jyt j logp(yt j |xt ) + (1 − yt j )×

(1 − logp(yt j |xt ))} + λ∥V −V0∥2F (3)

where yt j = 1 when the input word xt has a neighboring word
with type c j in the training set, and yt j = 0 otherwise. w j is
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Figure 2: The hierarchical multi-task word embedding model architecture. Note that both tasks have access to the embedding
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shows an example of how data is fed into the model. Here “Runny_nose” is the target word, and the context window size is 7.

the positive sample weight for class c j that can be set as the in-
verse of positive/negative samples ratio. The conditional probabil-
ity p(yt j |xt ) is defined as p(yt j |xt ) = σ(UT

j Vxt ). V0 is the word
embedding after training the task T2 at the previous epoch and λ
is a regularization parameter. For simplicity, we omit the bias term
in Eq. (3), although we include bias terms in our implementation.

The term ∥V−V0∥2F in Eq. (3) is called a successive regularization
term [12], which penalizes the deviation of the current embedding
parameters and those learned from the other task. Such a regu-
larization term helps prevent parameters from varying too much
when switching tasks hence can stabilize the training process.

Note that we assume each medical term has only one semantic
type, which is valid in the medical domain as it is rare for a medical
entity to have two or more semantic types. For example, “aspirin”
is a drug entity and it cannot have semantic types of disease.When
extending the task T1 to other areas where a term may have mul-
tiple semantic types, one can utilize context-aware models such
as contextual dependency networks [26]. Since our focus is in the
medical domain, we do not discuss general cases in this paper.

3.2.2 T2: NeighboringWord Prediction. Our approach to neighbor-
ing word prediction task is similar to recent works on improving
word embeddings using prior knowledge (e.g., paraphrase, syn-
onyms) [7, 34, 37]. Those methods modify the original word em-
bedding objective with a regularization term that encourages se-
mantically related words to share similar word embeddings. The
difference is that we approach the problem in a multi-task setting,
whereas their methods are all single task learning.

In particular, we augment the input to task T2 with outcomes
from the semantic type prediction task T1 and also utilize the suc-
cessive regularization term to encourage “a certain level” of con-
sensus between parameters of the two tasks.

Let θ = [V ,U ] denote the model parameters associated with
task T1. The objective of task T2 to be minimized is as follows:

LT 2 =
1

n

n∑
t=1

{
∑

−c≤j≤c, j,0
− logp(x j+t |xt , fT 1(xt ))+

λ1
∑

x ∈S(xt )

∥Vx −Vxt ∥22 } + λ∥θ − θ0∥2F (4)

where S(xt ) is the synonym/paraphrase set of xt from the exter-
nal knowledge, fT 1(xt ) is the neighborhood semantic type predic-
tion result of xt , λ1 is the regularization parameter for synonym
priors, θ0 are the task T1’s parameters after training T1 at the cur-
rent training epoch. The second regularization term is enforcing
the word embedding similarity between the target word xt and its
known synonyms, while the third term is the successive regular-
ization term to stabilize the training process.

Let φI = [VxI , fT 1(xI )]. The conditional probability of observ-
ing word xO given xI and fT 1(xI ) is defined as:

p(xO |xI , fT 1(xI )) =
exp (φTI WxO )∑

x ′∈X exp (φTI Wx ′)
(5)

One problem in Eq. (5) is the high complexity to compute the
normalization factor as it involves summation over all words in
the vocabulary. To address the problem, we use negative sampling
(NEG) [24] to convert the original one-vs-all multi-class objective
into a binary classification objective. With negative sampling, the
negative logarithm of Eq. (5) can be rewritten as:

J(xO ,xI ) = − logσ(φTI WxO ) −
∑

xk ∈Pneд(xO )

logσ(−φTI Wxk )

(6)



where Pneд(x j ) is the set of negative samples for x j . Plugging
Eq. (6) into Eq. (4), we have a simplified objective of the task T2:

LT 2 =
1

n

n∑
t=1

{
∑

−c≤j≤c, j,0
J(x j+t ,xt ) + λ1

∑
x ∈S(xt )

∥Vx −Vxt ∥22 }

+ λ∥θ − θ0∥2F (7)

3.3 Training
The model is trained over a large text corpus with an external
knowledge base support, in which semantic types and term-term
synonymous relation are available. We use mini-batch stochastic
gradient descent (SGD) with a schedule to decay the learning rate
by half after certain global steps.

During each epoch, the optimization iterates from the lower
task to the higher task as described in Figure 2. In particular, we
first minimize LT 1 in Eq. (3) to updateV andU over the full train-
ing set, then pass the optimized V andU to upper. By minimizing
LT 2 in Eq. (7) over the full training set, we updateW ,V andU and
pass V to the lower level task at the beginning of the next epoch.
We repeat the above process until reaching the predefined number
of epochs and output V as the final word embeddings.

The reason of choosing V instead ofW as the final embedding
is thatV is shared between two tasks and will be updated for both
tasks, while W is only updated when training the neighboring
word prediction task. Therefore V carries more semantic informa-
tion regarding the entity types. We also tried to useW as the final
embedding, but it did not show any improvement.

3.4 Application to Synonym Prediction
Although synonymous relation is utilized during word embedding
learning, the available synonyms have a limited coverage. To ex-
tract more synonymous pairs, one can either train more complex
models, or use a simple model (e.g. linear SVM [6]) but include
more informative features. In this paper, we adopt the latter one
since our focus is to learn more representative embeddings.

To capture more useful information for synonym extraction, we
follow Wang et al. [32] to construct features for pairs of terms, in-
cluding expanded embeddings and lexical matching features. Fur-
thermore, we add two more features, 1) cosine similarity between
a pair of word vectors, 2) Jaro–Winkler similarity [33] between
two terms at string level, which achieved the best performance in
entity name-matching tasks [2].

4 EXPERIMENT
Wehave collected a Chinesemedical corpus from 9 textbooks, med-
ical wiki A+ hospital [1] and medical QA forums2. In total, the cor-
pus contains around 10M sentences. We follow the UMLS entity
type taxonomy3, but merge low-level semantic types to its upper-
level concepts (e.g., detailed drug components to drugs) and re-
name several semantic types to make crowd-sourcing validation
easier. In total, there are 18 types: symptom, disease, drug, food,
therapy, surgery, prevention, medical device, department, cause,

2www.xywy.com
3https://metamap.nlm.nih.gov/SemanticTypesAndGroups.shtml

body part, external injury, biochemistry, examination and medical
index, physiology, psychology, medical regulation, microbiology.

4.1 Medical Entity and Synonym Collection
From the medical wiki website, we collect 70K professional enti-
ties. To identify informal medical terms, we use crowd-sourcing
to collect 30K informal medical descriptions. We train the well-
known named entity recognition model “CNN-BiLSTM-CRF” [21]
implemented by [36] on 200K sentences, in which the initial 100K
medical termswere annotated under the “BIOES” scheme [3]. Since
there are 18 semantic types, we have 73 NER tags in total. We ob-
tain 90.7% F1 score on another 20k labeled test sentences.

With the trainedNERmodel, we find 58K new entities and phrases
from the large medical corpus with 10M sentences. After crowd-
sourcing validation, we keep 51K and combined them with the ini-
tial 100K to build amedical dictionary of 151K entities belonging to
18 semantic types. In Figure 3, we provide the summary statistics
of our medical dictionary.
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Figure 3: Summary statistics of the medical dictionary

To collect initial synonymous pairs for word embedding and
synonym model training, we first utilize rules (e.g., A a.k.a. B) and
regular expression on the wiki text to identify the synonyms fol-
lowing certain patterns. Since rules have limited coverage, we also
use unsupervisedmethods to collect more synonyms. In particular,
we train the embeddings of 151K entities on the text corpus using
word2vec model [24], then apply density-based spatial clustering
(dbscan) [4] to find compact clusters. The reason of using dbscan is
that it does not require to specify the number of clusters and can
find clusters with any shapes. We set a smaller distance threshold
ϵ = 2 for two samples to be considered in the same neighborhood
and minPoint = 3 for the minimum number of samples for one
sample to be a core point. A smaller distance threshold will help
reduce false positives and achieve a higher precision.

After obtaining synonymous clusters (30K), we use crowd-sourcing
to guarantee that each cluster contains only high-quality synonyms.
We divide all annotators into several groups and let two groups
of people label the same batch of data. For disagreements, a third
group make a choice. The average annotator agreement is 0.80 ±
0.09. In total, we obtain 185K synonymous pairs.

www.xywy.com
https://metamap.nlm.nih.gov/SemanticTypesAndGroups.shtml


4.2 Experimental Data Preprocessing
To prepare the training data for word embedding, we use jieba4, a
well-known Chinese word segmentation tool, customized with our
medical dictionary, to cut sentences in the medical text corpus into
sequences of words and entities/phrases. Such a procedure will en-
sure word embedding algorithms to treat medical terms as a whole
and learn their representations. By filtering out rare words that ap-
pear less than five times and removing punctuation characters, we
obtain 411,256 unique words and phrases. We split the segmented
corpus into 3 parts: 80% training, 10% validation and 10% testing
for neighboring semantic type prediction experiment.

Among all the synonymous pairs, we first sample 25k pairs con-
taining 3586 unique entities for entity semantic relatedness eval-
uation in subsection 4.4. The rest 160k pairs are further split by
80%, 10%, 10% for training, validation and testing for synonym pre-
diction experiment in subsection 4.6. The 80% split of synonymous
pairs is also used as our term-term knowledge for word embedding
training. In Table 3, we summarize characteristics of the datasets.

Table 3: Characteristics of the datasets. “-” indicates no split-
ting. Semantic relatedness eval pairs data is sampled from
the overall 185K synonymous pairs and not used in word
embedding training.

Dataset Total Train Dev Test
Medical corpus 10M 8M 1M 1M
Medical dictionary 151K - - -
Synonymous pairs 160K 128K 16K 16K
Semantic relatedness eval pairs 25K - - -

4.3 Experiment Setup
We set word vector length d to 200, initial learning rate to 0.001,
neighboring window size to 5, mini-batch size to 400, number of
epochs to 20, and number of negative samples to 20.

To find the best hyper-parameters for our model, we run a pa-
rameter search on a combination of the successive regularization
parameter λ = {0.1, 0.5, 1, 2, 8} and synonym prior regularization
λ1 = {0.01, 0.05, 0.1, 0.5, 1}, and computed the average pair-wise
cosine similarity on the synonymous pair dev data.We find that the
parameters did not significantly change the performance (1.0% at
most). We set λ = 0.5 and λ1 = 0.05 that yields the best result.

To have a fair comparison, we train each method (ours and com-
peting methods) on the 80% split of corpus data (8M sentences)
and the term-term synonymous relation data. Also, each method
shares the same setup for the word vector length, the mini-batch
size, the number of negative samples, and the number of epochs.

We compare our method with several state-of-the-art word em-
bedding approaches.

Mikolov et al. [23]. We use the gensim package5 to train a
skip-gram model with the same configuration as our method.

Yu and Dredze [37]. We train word vectors using their joint
model training code6 using the same settings as above. The 80%
split of “golden” synonyms are used as the paraphrase DB input.C
is set by default.
4https://github.com/fxsjy/jieba
5https://radimrehurek.com/gensim/models/word2vec.html
6https://github.com/Gorov/JointRCM

Wang et al. [32]. The method only utilized semantic type infor-
mation during training, and there are no other hyper-parameters
to tune. Since there is no open source implementation for this
method, we carefully implement it in Tensorflow for comparison.

Faruqui et al. [7]. The “retrofitting” algorithm in this paper is
a post-processing method to make word vectors more similar for
synonym pairs. We use the source code7 and apply it to the word
vectors fromMikolov et al. [23].The semantic graph is constructed
from the 80% split (128K) of the“gold” synonyms.

w2vRegSTL. A single-task version of our method, which only
keeps the neighboring word prediction task at the upper level.

4.4 Entity Semantic Relatedness Evaluation
This evaluation is to test the quality of learned word/phrase repre-
sentations in a direct way without training any supervised models.
Among all metrics, the cosine similarity between a pair of word
vectors is commonly used to quantify how similar two words are.
However, since each method learns word embeddings in different
embedding space, directly comparing cosine values across all meth-
ods is inappropriate. Instead, we compare the precision of its top
k ranked entities based on the cosine similarity for each entity.

In particular, given an entity for each method, we first compute
the cosine similarity between the input entity and the rest enti-
ties in the semantic relatedness evaluation pairs data, then sort
them in descending order. Since the true synonyms within the
evaluation data for the input are known, we can compute preci-
sion@k = tp/k , where tp is the number of true synonyms in the
input entity’s top k ranked entities.

Table 4: Average precision@k for k = 1, 3, 5. Bold font indi-
cates the best performance. Cells marked with * designates
that our method significantly outperforms (p < 0.05) all the
compared methods.

Model Precision@k
k = 1 k = 3 k = 5

Our method 0.654∗ 0.603∗ 0.571∗

Mikolov et al. [23] 0.538 0.507 0.467
Yu and Dredze [37] 0.619 0.572 0.547
Wang et al. [32] 0.579 0.532 0.487
Faruqui et al. [7] 0.588 0.558 0.513
w2vRegSTL 0.622 0.579 0.545

In Table 4, we report the average precision@k for the unique
3586 entities in the semantic relatedness evaluation data. From
the table, we observe that the original skip-gram model performs
the worst, which is reasonable as it does not utilize any seman-
tic knowledge. Although Wang et al. [32] leverages the semantic
type information, its performance is slightly better than Mikolov
et al. [23], but still inferior to those methods using synonymous
relations. Faruqui et al. [7], the post-processing method after em-
bedding training, performs worse than Yu and Dredze [37] and
w2vRegSTL, which leverages the same term-term synonymy re-
lations but uses them during training.

We suspect one possible reason is that Faruqui et al. [7] only uti-
lized the training synonym pairs, which may have little overlaps
7https://github.com/mfaruqui/retrofitting

https://github.com/fxsjy/jieba


with the test synonym data. In that case, even though Faruqui et al.
[7] enforces smoothness of synonym pairs in the training data, it
makes no difference for the terms in the leave-out data. To the con-
trary, Yu and Dredze [37], w2vRegSTL and our proposed method
iteratively learn embeddings not only from synonymous relation
but also from texts, which will allow the similarity to propagate
between two isolated terms via some intermediate terms.

Finally, our proposed multi-task method outperforms all base-
lineswith statistical significance under t-test (p<0.05), which demon-
strates the benefit of utilizing both semantic type and synonymous
knowledge and hierarchically arranging the two tasks.

4.5 Semantic Type Prediction Evaluation
Since we introduce the auxiliary task “neighboring word semantic
type prediction” to skip-gram model, it is worthwhile to conduct a
study on the effectiveness of our framework on this task.

For comparison, we fix all the word vectors from competing
methods and train the same binary relevance model as described
in Eq. (3) except for replacing the successive regularization term
with an L2 norm penalty on parametersU .

Table 5: AUC scores for “neighboring word semantic type
prediction” task. MacroAUC means macro-averaged AUC
and MicroAUC means Micro-averaged AUC.

Method MacroAUC MicroAUC
Our method 79.92%∗ 80.03%∗
Mikolov et al. [23] 76.06% 76.90%
Yu and Dredze [37] 76.21% 76.71%
Wang et al. [32] 63.09% 65.27%
Faruqui et al. [7] 76.27% 76.84%
w2vRegSTL 77.58% 77.88%

Table 5 shows themicro-average andmacro-averageAUC scores
for the 18 semantic types. We observe that Wang et al. [32] per-
forms much worse than any other methods. The rest baselines be-
have similarly to each other. Again our method achieves the best
result of around 80% AUC, which demonstrates the importance of
jointly learning related tasks.

4.6 Synonym Prediction Evaluation
Since our focus of this paper is to learn bettermedical entity/description
representations for synonym prediction, we utilize a linear classi-
fier [6] rather than complicated ones to demonstrate the utility
of learned embeddings. As discussed in subsection 3.4, we extract
both expanded embedding features and syntax similarity features,
leading to 1406 features in total for each pair of terms. To have a
fair comparison, we use the same feature construction procedures
and run the same classifier for all competing methods.

To construct negative samples, we randomly sampled 1.4Mpairs
of medical terms from our dictionary. Such a procedure may intro-
duce false negatives, but the chance is low given a relatively large
number of terms. We split the 1.4M negative samples by 80%, 10%,
10% as well and combine with the true synonymous pairs shown
in Table 3 to make training, validation and testing data. We use the
L2 regularized logistic regression in LIBLINEAR package [6] and
tune the hyper-parameter in {0.01, 0.1, 0.5, 1, 4, 16, 64, 256} over

the validation data on F1 metric. The positive sample weight is set
to 8.75 according to the inverse of positive and negative samples
ratio in the training data (1.4M/160K).

Table 6: Precision, recall and F1 score of all methods on the
test data. Cells marked with * designates that our method
significantly outperforms (p < 0.05) all baselines.

Method Precision Recall F1 score
Our method 82.34%∗ 93.07%∗ 87.37%∗
Mikolov et al. [23] 75.39% 85.53% 80.14%
Yu and Dredze [37] 80.23% 92.03% 85.73%
Wang et al. [32] 81.36% 85.86% 83.55%
Faruqui et al. [7] 80.09% 88.08% 83.89%
w2vRegSTL 79.87% 91.48% 85.28%

Table 6 shows precision, recall and F1 score on the test data.
We first observe that all methods have a relatively higher recall
than precision, which is resulted from the positive class weight.
Actually in real-world applications, one can tune different sample
weights and prediction threshold to trade off between precision
and recall. The fact that Wang et al. [32] obtains the second best
precision but has a lower recall reveals that the term-term synony-
mous relation is more important than the semantic type knowl-
edge for synonym prediction task. Our method leverages both se-
mantic type information and term-term synonymy knowledge and
achieves the best performance on all the three metrics with statis-
tical significance under proportion test (p-value<0.05).

To understand how much contribution each component of our
full model makes to the synonym prediction, we did an ablation
study and reported the F1 score when each component was dis-
abled, as illustrated in Table 7.

Table 7: Ablation study on synonymprediction task: F1 score
when each component was removed from the full model,
while the rest components are unchanged.

Model F1 score
Our full model 87.37%
w/o the auxiliary task 85.28%
w/o the synonymous regularization 86.23%
w/o the pairwise lexical matching features 86.93%

Removing the auxiliary task of neighboring word semantic type
prediction and synonymous regularization significantly deteriorates
the model performance by 2.09% and 1.14% respectively (signifi-
cant statistical t-test withp < 0.01). Such a huge performance drop
demonstrates the importance of introducing the auxiliary task and
incorporating synonymy knowledge. Furthermore, disabling the
pairwise lexical matching features will slightly reduce the predic-
tion performance, which is consistent with Wang et al. [32].

4.7 Application to unlabeled symptom pairs
In medical domain, the high language use variability usually orig-
inates from symptom terms since users have different expressions
to describe the same concept. To generate more synonymous pairs,
we apply our trained synonym model to 400M symptom pairs that



Table 8: Example: 8 symptom terms and their top 5 synonymous terms with translation. Bold font indicates false positives.
Query term Top 5 most synonymous terms and their probability scores
头皮屑好多 (lots of dan-
druff)

头皮多 (lots of dandruff),0.999:起皮屑 (having dandruff),0.995:头屑多 (lots of dandruff),0.949:头皮好
痒 (Very Itchy scalp),0.895:头皮藓 (Scalp Ringworm),0.840

例假特别少 (very low
menstrual flow)

例假少 (low menstrual flow),1.000: 经量很小 (less bleeding during periods),0.990: 例假很少 (very low
menstrual flow),0.956:尿量特别少 (very low urine flow),0.766:尿特别少 (low urine flow),0.659

小肚右侧疼 (abdominal
pain on right side)

小肚疼 (abdominal pain),1.000:小肚痛 (abdominal pain),0.998:小肚有点疼 (little abdominal pain),0.961:
小腿肚疼 (calf pain),0.958

胸部痛 (chest pain) 胸部都会胀痛 (chest swelling and pain),1.000:胸部有点痛 (a little pain in the chest),1.000:胸部胀 (chest
swelling),1.000:胸部疼 (chest pain),0.999:胸部刺痛 (stabbing pain in the chest),0.999

口干 (dry mouth) 口干苦 (dry and bitter mouth),1.000:口很干 (very dry mouth),1.000:口干燥 (dry mouth),0.998:口易干
(mouth gets dry easily),0.995:口会干 (mouth gets dry),0.995

老是尿尿 (very frequent
urination)

小便有点勤 (a little frequent urination),1.000:小便很频 (very frequent urination),1.000:尿比较频 (very
frequent urination),1.000:小便过多 (too much urination),1.000:尿老是黄 (yellow urine),0.988

面色无华 (pale-faced) 面色发黄 (pale-faced),1.000: 面色晦暗 (pale-faced),1.000: 面色淡白 (pale-faced),1.000: 面色暗黄 (pale
faced),1.000:面色红润 (complexions rosy),1.000

肚 脐 周 围 疼 痛 (pain
around the navel area)

肚脐上痛 (navel pain),1.000:肚脐右边疼 (navel pain on right side),1.000:肚脐上边疼 (navel pain on
upper side),1.000:肚脐痛 (navel pain),1.000:肚脐左下隐痛 (novel pain on lower-left side),1.000

never occur in our collected synonym data and obtained around
1Mnew synonymous pairs. Although there is noway to thoroughly
validate the accuracy of the newly generated pairs, we perform an
manual validation by following a similar procedure for entity se-
mantic relatedness evaluation.

First, we randomly select 200 symptoms as queries and collect
each symptom’s top 5 most synonymous terms based on the prob-
ability score, then manually labeled each term whether it is a true
synonym to the query entity and compute themetric of precision@k .
Finally, we calculate the average precision@k and report the result
in Figure 4. Compared with Table 6, the precision is decreased.The
possible reason is that we only sample the symptom pairs that are
very similar to each other from the unlabeled data, which is more
challenging than random sampling regardless of semantic types.
Nevertheless, our model still achieves 73% precision up to k=3.
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Figure 4: The average precision@k for 200 randomly sam-
pled symptom terms

4.8 Error analysis
We also carefully analyze a few typical errors found during our
manual validation to guide future research. In Table 8, we list 8

symptom terms and their top 5 most synonymous terms, wherein
the false positives are highlighted in bold font.

From the table, we observe that although our method can suc-
cessfully link a few semantically equal but lexically different de-
scriptions, for example,例假特别少 (lots of dandruff) v.s.经量很
小 (less bleeding during periods) and老是尿尿 (very frequent uri-
nation) v.s.小便很频 (very frequent urination), there are several
limitations to prevent the proposed method working flawlessly:

• Fail to distinguish the body parts that share very similar lexi-
cal patterns. For example,小肚 (abdomen) and小腿肚 (calf)
have only one character difference, but they refer to different
body parts. To reduce such errors, a subject matching modu-
lar could be developed to detect if two phrases share the same
subject before applying synonym predictive model.

• Fail to differentiate synonymy from semantic relatedness. Al-
though word embedding has captured a certain level of se-
mantic relatedness, it is not always reliable to tell the differ-
ence between synonymy and semantic relatedness, especially
for pairs of terms that are both lexically and semantically re-
lated. For example, 胸部痛 (chest pain) and 胸部胀 (chest
swelling) often co-occur with each other, and their embed-
dings are quite similar to each other, hence are predicted to
be synonymous. To minimize such errors, more high-quality
negative samples covering such cases are needed to guide clas-
sifiers to learn the subtle difference.

• Fail to sense the position difference. For example,肚脐周围疼
痛 (pain around the navel area) and肚脐右边疼 (navel pain
on the right side) belong to the same concept of肚脐疼 (novel
pain) but have different locations. Strictly speaking, they are
not synonymous pairs. To alleviate such problems, more such
negative samples are needed, and adverbs of location features
can be extracted to learn the position difference.

5 CONCLUSION
We propose a hierarchical multi-task word embedding model to
learn more representative medical entity embeddings and apply



them to medical synonym prediction. By introducing an auxiliary
task of neighboring word semantic type prediction and fully uti-
lizing medical domain knowledge, our model yields more seman-
tically meaningful word representations as evaluated by entity se-
mantic relatedness, neighboringword semantic type prediction and
synonymprediction. Although ourmodel is developed for themed-
ical domain, it can be applied to other domains where external
knowledge is tremendous, and language use variability is very high.
Furthermore, we create a large medical text corpus in Chinese that
includes annotations for entities, descriptions and synonymous pairs
for future research in this direction.

Future work includes applying the model to medical domains
in other languages and exploring an end-to-end framework to in-
tegrate word representation learning and synonym prediction.
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