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ABSTRACT
Recent years have witnessed the continuing growth of people’s de-
pendence on touchscreen devices. As a result, input speed with the
onscreen keyboard has become crucial to communication efficiency
and user experience. In this work, we formally discuss the general
problem of input expectation prediction with a touch-screen input
method editor (IME). Taken input efficiency as the optimization
target, we proposed a neural end-to-end candidates generation solu-
tion to handle automatic correction, reordering, insertion, deletion
as well as completion. Evaluation metrics are also discussed base on
real use scenarios. For a more thorough comparison, we also pro-
vide a statistical strategy for mapping touch coordinate sequences
to text input candidates. The proposed model and baselines are
evaluated on a real-world dataset. The experiment (conducted on
the PaddlePaddle deep learning platform1) shows that the proposed
model outperforms the baselines.
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1 INTRODUCTION
In most mobile devices, the soft-keys are small and lack tactile feed-
back of physical key boundaries. It is hence fairly easy for touches
to fall out of the visible soft-button areas of expected characters.
Once, an unexpected character sequence has been typed, it is dif-
ficult to move the cursor to the precise location. Thus, one has to
delete most of the input sequence from the end and re-input it,
which decreases input efficiency and leads to bad user experiences.

To minimize the need for manual correction, these days touch-
screen input methods generate several possible candidates for the
input sequence from the touch coordinates in real-time. As shown
in Figure 1, when the user touches the soft keyboard, the applica-
tion continuously update a list of the candidate words, until the
user selects one word from the list. This has become the common

1https://www.paddlepaddle.org.cn
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Figure 1: An illustration of the input process and the corre-
sponding candidate lists. The first touch falls into the area
of ‘g’, so the candidate list shows high-probability words be-
ginning with ‘g’. Then the second touch falls on the board
of ‘i’ which is close to ‘o’, so the candidate list contains both
possible strings ‘gi’ and ‘go’.

practice in mobile devices. There are, however, at least three major
challenges in such a candidate generation and display process.

First of all, there are various mistaken inputs in the typing
process. (i): The touch coordinates may fall outside the soft-button
areas of target characters [26], and the distributions vary according
to the different characters. Besides, for the same character, different
context also leads to inconsistent coordinate distributions. (ii): Sim-
ilar pronunciation also causes the touch distribution diffusion [8].
For instance, people misuse ‘c’ and ‘k’ because they may have the
same syllable. (iii): Moreover, when typing with two hands, people
sometimes input the sequence in the wrong order. For example, one
can input ‘doing’ as ‘doign’ for the over-rapid typing of the left hand.
Besides, (iv): missing typing or (v): redundant typing operations also
make it challenging to cover expected input with candidates whose
character numbers are equal with the touch coordinate numbers.

Secondly, a coordinate sequence may be an incomplete input
concerning the expectation. For example, when the input method
receives the coordinate sequence of ‘sat’, the user’s expected word
may be ‘Saturday’ or ‘satisfied’. Ideally, an algorithm should au-
tomatically complete the input and update the candidate list to
help users finish typing with one selection. Therefore, it should be
obvious that the candidates with only character-level corrections
are far from being enough to satisfy user expectations.

Last but not least, the sizes of mobile device screens are small,
and hence only limited candidates can be displayed on the list.
The generated candidates should be scored and ranked properly.

To address the above challenges, in this paper we introduce the
neural encoder-decoder framework with a beam search. It takes
noisy coordinates as input to generate scored candidates. The neu-
ral sequence-to-sequence models have the promising potential to

https://doi.org/10.1145/3366423.3380080
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handle symbol mapping, inserting, deleting and reordering, which
has been proved in translation tasks [2]. These properties are help-
ful to correct themistaken input. Moreover, the encoder-decoder
framework has achieved remarkable performance on image cap-
tioning or automatic reply [24, 31]. It shows that such a framework
has the capacity to learn sequence-level representation tasks that
do not rely on one-to-one symbol mapping. Thus, it is a good choice
to encode the coordinate sequence of the first few characters (rel-
atively incomplete input) and generate the completed sequence.
During a beam search decoding process, we obtain the scores of
possible sequences according to the softmax probabilities, which
can be used to select limited candidates to be displayed. In this
way, the input efficiency of users can be improved by avoiding
manual correction and completion.

The contributions of this work can be summarized as follows:
• We formally describe the task of candidate list prediction on
touch screen devices and the optimization objective for input
efficiency improving. The proposed framework is trained
incrementally and validated with different measures on a
real-world dataset. The experimental results show that the
proposed methods significantly improve the top-1 accuracy
and the character-per-touch metric over baseline strategies.

• For a simplified prediction problem, we introduce a neural
sequence-to-sequence model that takes the touch coordi-
nate sequence as input and generates words by handling
replacing, reordering, inserting, deleting and completing in
an end-to-end manner.

• Two evaluation metrics are explained based on real-world
application scenarios. We also discuss the inconsistency of
the twometrics and the underlying difference of assumptions
of user preferences.

• For a more thorough comparison, we provide a statistical
strategy for mapping touch coordinate sequences to word-
level input candidates as a baseline.

2 PROBLEM STATEMENT
We examine the user behavior of text input on mobile devices
through a commercial input method application Facemoji. The
task of continuously updating the candidate list can be formally
described as follow. The core function of the algorithm can be
viewed as an agent who predicts a list of candidate words𝑊𝑖,𝑡 =〈
𝑤1
𝑖,𝑡
,𝑤2

𝑖,𝑡
, ...,𝑤𝑛

𝑖,𝑡

〉
after the user inputs the 𝑡-th character of the

𝑖-th word based on the user inputs (𝑃𝑖−1 and𝐶𝑖 ), what the user can
see in the interface (𝐿 andW𝑖 ) and the user’s habits (𝑈 ).

𝑊𝑖,𝑡 = 𝑓𝜃 (𝑃𝑖−1,𝐶𝑖 , 𝐿,W𝑖 ,𝑈 ) (1)

where 𝑃𝑖−1 = (𝑝1, 𝑝2, ..., 𝑝𝑖−1) is the previous words inputted by
the user, 𝐶𝑖 = (𝑐1

𝑖
, 𝑐2
𝑖
, ..., 𝑐𝑡

𝑖
) is the inputted touch coordinates of

the current word, 𝐿 represents the keyboard layout that maps the
coordinates to characters,W𝑖 =

{
𝑊𝑖, 𝑗 |1 ⩽ 𝑗 ⩽ 𝑡 − 1

}
indicates the

candidate lists of words that have been shown to the user right
after she/he inputs the former 𝑗-th coordinates, and𝑈 represents
user specific features.

There are multiple objectives for developing input method al-
gorithms. For example, some applications focus on entertaining
aspects and put emojis on the top of the list. In this work, we focus

on the input efficiency. If a character sequence in the candidate list
is selected by the user, we call such sequence a user expectation
𝑋𝑖 . Our objective is to optimize parameters 𝜃 for function 𝑓𝜃 to
minimize the position of 𝑋𝑖 in list𝑊𝑖,𝑡 .

argmin
𝜃

𝑝𝑜𝑠 (𝑋𝑖 ,𝑊𝑖,𝑡 ) (2)

where 𝑝𝑜𝑠 (𝐴, 𝐵) represents 𝐴’s particular rank position in list 𝐵.

2.1 Practical Concerns for the Problem
Due to increasing privacy concerns, we only randomly sample lim-
ited information during data collection. Firstly, we only extract the
touch coordinates within sampled words and collect no inter-word
information. With absence of 𝑃𝑖−1, we cannot make use of a lan-
guage model as previous works [13, 32]. Secondly, the stream data is
anonymized and randomly shuffled, and no temporal, geographical
information or password is included. Thus, no personalized infor-
mation𝑈 is used although it has been proved to be helpful [13, 30].
Also, limited by the size of the log stream, we cannot save candidate
lists for all time steps W𝑖 . We hence only collect the coordinate se-
quence𝐶𝑖 and user expectation of 𝑋𝑖 . The word prediction problem
is thus simplified as:

𝑊𝑖,𝑡 = 𝑓𝜃 (𝐶𝑖 , 𝐿) (3)

Note that the result is independent with context word. From now
on, we will omit the subscript 𝑖 in the denotations.

2.2 Online Solution and Data Collection
Given the coordinate sequence 𝐶 , there are many methods to pre-
dict the candidate word list. The online solution is a rule-based one
designed by experts. It gets the original user input based on which
rectangle areas of characters the coordinates fall into. And then the
solution generates candidates by enumerating the possible char-
acter replacing, deleting, inserting and reordering and completing.
Finally, the candidates are sorted based on the coordinate deviation
level (including Bayesian touch distance [5]) and word frequency.

Users update the candidate list by typing, deleting and re-typing
until they get their expectations. During this process, we can collect
the original input coordinates 𝐶 and corresponding expectation 𝑋 .
And the rule-based solution can be iteratively updated based on
the collected data sampled from all English keyboard users.

3 FRAMEWORK FOR CONVERTING
COORDINATES TO CANDIDATES

It is expensive to design different refined hand-crafted rules or
develop different rules for countries with different user behaviors.
Data-driven methods are promising to outperform rule-based ones
and can be easily trained on datasets of different distributions (e.g.,
datasets from non-English speaking countries).

A recurrent neural network (RNN) is ideal for handling sequence
input of variable length. Meanwhile, an RNN decoder with a beam
search can naturally generate several character sequences as candi-
dates. We train a sequence-to-sequence framework with attention
using 𝐶 and 𝑋 as input and target sequence respectively. In this
way, the model learns to generate 𝑋 as the top one candidate and
minimize 𝑝𝑜𝑠 (𝑋,𝑊𝑡 ). If 𝑝𝑜𝑠 (𝑋,𝑊𝑡 ) > 1, the loss will not be zero
and the parameters will continue to be updated.
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Figure 2: The illustration of the proposed framework handling coordinate input of ‘gi’. Some secondary components, such as
softmax layers are omitted. Both ‘#’ and ‘eos’ represent end of the sequence.

3.1 Encoder and Decoder Network
Deep neural networks often take high-dimensional dense vectors
as input [3]. Here we use a full connection layer to map the two-
dimensional points to high-dimensional space.

𝑒𝑡 = 𝑓 (𝑊𝑐𝑡 + 𝑏) (4)

where 𝑓 represents the sigmoid function.𝑊 and 𝑏 represent the
weight and bias respectively. An RNN structure makes it possible to
encode the information of context touches step by step. We leverage
the gated recurrent unit (GRU) to encode the arbitrary-length touch
coordinates [10]. The hidden state vector of the encoder at time 𝑡
can be computed as:

ℎ𝑡 = GRU(ℎ𝑡−1, 𝑒𝑡 ) (5)

The length of predicted words is not always equal with the
number of input coordinates. Therefore, besides automatic correc-
tion, the generator is supposed to have the capacity of deleting
redundant inputs, inserting missing inputs and completing the in-
put sequences. The RNN-decoder can generate a flexible-length
sequence to cover the above situations. Thus, RNN decoder with
attention mechanism [2, 27] is introduced to learn weights for the
crucial inputting and handle possible alignment:

𝑑𝑡 = 𝐺𝑅𝑈 (𝑑𝑡−1, 𝑣𝑡−1,𝑤𝑡 ) (6)

where 𝑣𝑡−1 is the embedding of the character predicted in last time
step, and attention vector𝑤𝑡 can be computed as:

𝑢𝑡 𝑗 = 𝑣
𝑇𝜎ℎ (𝑊 ·

[
ℎ𝑡 , 𝑑 𝑗

]
) (7)

𝑎𝑡 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑢𝑡 𝑗 ) (8)

𝑤𝑡 =

𝑇𝑥∑
𝑗=1

𝑎𝑡 𝑗ℎ 𝑗 (9)

where 𝜎ℎ represents ReLU function [14], while𝑊 and 𝑣𝑇 are learn-
able parameters. The output characters are select based on the

softmax probabilities [7].

𝑦𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑑𝑡 ) (10)

And the cross-entropy loss is used to measure the difference be-
tween the predicted distributions and the gold standard ones [11].

3.2 Learning and Predicting Details
During the training process, the decoder greedily selects the char-
acter with the largest probability. Teacher-forcing technology is
used to improve the training process [15]. The current RNN input
is decided based on the ground-truth character of last-time, instead
of the predicted one. During prediction, a beam search strategy [16]
is used to i): get more accurate prediction than greedy search by en-
larging search breadth and ii): generate multiple scored candidates.

4 EVALUATION METRICS
In this section, we discuss two perspectives on evaluating an in-
putting algorithm and the possible inconsistency.

4.1 Ranking Metric and Accuracy
Selecting the candidates to be displayed on the user interface can
be treated as a ranking problem, which can be evaluated with
discounted cumulative gain (DCG) [17, 22]. In the real-world scene,
when users finish typing a word, they are used to touch the spacebar
and expect the top one candidate with a space shown on the text-
field. Therefore, 𝐷𝐶𝐺1 is used to address the importance of the top
one prediction. And the measurement can be written as:

𝐷𝐶𝐺1 = 2𝑟𝑒𝑙1 − 1 (11)

where the graded relevance 𝑟𝑒𝑙1 of all samples is set to 1 if and only
if the top one candidate covers the expectation.

𝑟𝑒𝑙1 =

{
1, if top candidate is expected
0, otherwise

(12)
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In this condition, the average top one ranking metric is the same
with accuracy or word prediction rate [32]. We see that the exist-
ing word-level matching evaluation is a specialization of list-level
ranking metrics.

4.2 Character per Touch
Evaluating in a character-level, the input efficiency can be repre-
sented as the ratio of the numbers of expected character to the times
of the user touching screen. The previous word uses Keystroke Sav-
ings (KS) to evaluate the character-level performance in automatic
completing task [13, 32]. Such a metric can be regarded as a micro-
averaged evaluation on all character in the test set. However, in
practice, we try to find every extreme bad case that hurts the user
experience. Therefore, we evaluate the character-level performance
word by word and then compute macro-averaged result upon all
words.

Moreover, simulations in previous works assume that (a) the user
will notice immediately if the target word is among top candidate
list and (b) the characters have been inputted is exactly same with
user expectation. However, the collected log shows that i) users
select the expected word after some redundant touches and ii)
all existing candidates may contain character different from user
expectation (but the same with user’s mistouch).

Instead of using character-level simulation, we perform an eval-
uation based on the word-log data. Formally, given the user expec-
tation 𝑋 and coordinate sequence 𝐶𝑡 , if the algorithm returns a
𝐾-length candidate list𝑊𝑡 , then the character per touch of candi-
date𝑤𝑘

𝑡 ∈𝑊𝑡 can be computed as:

CPT𝑐𝑎𝑛𝑑 (𝐶𝑡 , 𝑋,𝑤𝑘
𝑡 ) =

𝑙𝑒𝑛(𝑋 )
𝑡 + 𝑢𝑝𝑑𝑎𝑡𝑒 (𝑋,𝑤𝑘

𝑡 )
(13)

where 𝑢𝑝𝑑𝑎𝑡𝑒 (𝑋,𝑤𝑘
𝑡 ) denotes the number of operations that user

need to delete the wrongly typed character in𝑤𝑘
𝑡 and retype the

correct ones in 𝑋 . So the denominator is the times of user touching
screen to get the expected sequence and numerator indicates the
length of the user expectation.

We assume that among all candidates 𝑤𝑘
𝑡 ∈ 𝑊𝑡 , the user will

choose the one with the largest CPT𝑐𝑎𝑛𝑑 to avoid deleting or retyp-
ing operations. So character per touch of candidate list CPT𝑙𝑖𝑠𝑡 can
be computed as:

CPT(𝐶𝑡 , 𝑋,𝑊𝑡 ) =𝑚𝑎𝑥 (CPT𝑐𝑎𝑛𝑑 (𝐶𝑡 , 𝑋,𝑤𝑘
𝑡 )) (14)

4.3 Inconsistency between the Metrics
In practice, the above ranking metric and character-touch ratio
are not always consistent. 𝐶𝑃𝑇𝑙𝑖𝑠𝑡 relies not only on whether the
candidate is correct but also on the number of characters that
need to be modified if it is wrong. Therefore some candidates may
increase the mathematical expectation of accuracy but decrease the
mathematical expectation of 𝐶𝑃𝑇𝑙𝑖𝑠𝑡 at the same time.

If a user prefers one whole word-level correction rather than sev-
eral tiny character-level corrections in differentwords, the sequence-
level accuracy works better. Conversely, 𝐶𝑃𝑇𝑙𝑖𝑠𝑡 measurement can
bring a better user experience. Therefore, in evaluation for real-
world application, only those algorithms work better on both met-
rics can be considered as sufficient improvements.

5 EXPERIMENT
5.1 Experimental Settings
We conduct incremental training because it is friendly to data
streams of online applications. The training process stops when
the number of samples reaches 50 million, and the model with the
minimum Log perplexity on the streaming validation data is se-
lected for testing. The validation set and testing set both contain
10 million random samples. We believe the training and testing set
provides more than needed range and resolution of the input and
output variable values, and thus cross-validation is skipped.

We set the hidden layer size to 256 for both bidirectional GRU
encoder and decoder. The input coordinates are mapped to a 512-
dimensional space through the full-connection layer. In the de-
coding process, each character is mapped to an embedding of 256
dimensions.

We set the batch size to 128 for the training, validating and testing
process. The gradient is clipped to a number no larger than 5.0 and
the Learning rate is fixed to 0.0001 during Adam optimization [18].
The above hyper-parameters are selected with a grid search on an
appropriate scale or log scale on the validation set. Other hyper-
parameters combinations in the frequently-used scales could bring
at most about 3% accuracy reduction. It’s an obvious impact, but
such a non-optimal accuracy is still higher than baselines.

During the evaluation, the beam size is set to 3, which is enough
to cover all mainstream settings of the exclusive choice list on the
touchscreen mobile devices.

5.2 Baseline Methods and Comparison
To show the effectiveness of the proposed framework, we com-
pare it with several baseline systems. The basicRectangle baseline
contains only a simple detection rule. Therefore, besidesOnline so-
lution described in Section 2, we proposed a Statistical Model that
implements correcting, reordering and completing as an enhanced
baseline for a more thorough comparison.

5.2.1 Rectangle. Given a touch coordinate, we simply output the
expected character according to whose rectangle area it falls in.
And all the characters make up the candidate.

5.2.2 Statistical Model. Given the result of rectangle-based deci-
sion 𝐺 = ⟨𝑔1:𝑡 ⟩, we can generate possible candidates through a
series of operations. Firstly, we replace rectangle-decided charac-
ter 𝑔𝑘 with possible expected character 𝑚𝑘 (1 ⩽ 𝑘 ⩽ 𝑡 ) and get
refined candidates 𝑀 = ⟨𝑚1:𝑡 ⟩. Then for each adjacent character
pair𝑚𝑘 and𝑚𝑘+1 (1 ⩽ 𝑘 ⩽ 𝑡 − 1), we get both original and reorder
sequences, denoted as 𝑅. For each 𝑅, we get gain candidates by
lookup the high-frequency words that contain the prefix 𝑅. The
final candidate set F (𝑅) can be represented as:

F (𝑅) = {𝐹 |𝑝𝑟𝑒 𝑓 𝑖𝑥 (𝐹 ) = 𝑅} (15)

The probability of final candidate 𝐹 ∈ F (𝑅) can be estimated
according to the above generation processes:

𝑝 (𝐹 ) = 𝑝 (𝐹 |𝑅)
∑

𝑀 ∈M
𝑝 (𝑅 |𝑀)𝑝 (𝑀 |𝐺) (16)

𝑝 (𝐹 |𝑅) can be computed with maximum likelihood estimation on a
dictionary with word frequency.
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We assume that the mistouch and same-pronunciation misuse of
characters are independent with context inputs. Given the original
sequence 𝐺 , the probability of a modified sequence𝑀 can be com-
puted with the product of the probability of character-to-character
replacing.

𝑝 (𝑀 |𝐺) =
𝑁∏
𝑛=1

𝑝 (𝑚𝑛 |𝑔𝑛) (17)

Similarly, with the independence assumption, the reorder probabil-
ity can be described as:

𝑝 (𝑅 |𝑀) =
𝑁−1∏
𝑛=1

𝑝 (𝑟𝑛𝑟𝑛+1 |𝑚𝑛𝑚𝑛+1) (18)

The above model can generate candidates as well as get its prob-
abilities. However, a more general score can be estimated by the
log-linear model without assuming that the probabilities are equally
important [25]. In this work, we train a log-linear model to score the
generated candidates by using replacing (modifying), reordering
and completing probabilities as features. Such a strategy imple-
ments automatic correction as well as automatic completion, which
forms a strong baseline for the neural model.

Table 1: Accuracy of different methods.

Accuracy (𝐷𝐶𝐺1) 𝐶𝑃𝑇𝑙𝑖𝑠𝑡
Rectangle 0.693 0.938
Online 0.803 1.020
Statistical Model 0.814 1.022
Neural Model 0.859 1.026

5.2.3 Experimental Results. The experimental results of the rank-
ing metric and character-per-touch metric are shown in Table 1.
The online solution, statistical model and neural model outperform
the Rectangle baseline. It is because these three methods alleviate
the “fat finger problem” [26] by automatic correction. Online, sta-
tistical and neural approaches can reach a 𝐶𝑃𝑇𝑙𝑖𝑠𝑡 larger than 1. It
indicates that the automatic completions improve input efficiency.
Nevertheless, the improvement of performance of the online solu-
tion is limited. We will see that data-driven models make better use
of comprehensive information in data than expert-designed rules.

The neural model outperforms the statistical model on both
accuracy and 𝐶𝑃𝑇𝑙𝑖𝑠𝑡 measures. The statistical approach can gen-
erate candidates with out-of-rectangle characters by enumerating
the character-replacing operation and achieve good coverage of
the expected word. However, the model cannot represent the real
probabilities because of a lack of coordinate-to-character (mapping)
probabilities. These probabilities are memory consuming for mobile
devices. Therefore, with only character-level features, the statistical
strategy is mainly dominated by word frequency. In contrast, the
neural model generates candidates by considering various factors.
Both word frequency and coordinate-based probability are encoded
in the network parameter during training.

The difference of 𝐶𝑃𝑇𝑙𝑖𝑠𝑡 among the online solution, statistical
model and the neural model is not as evident as the difference
of accuracy. In the online solution or statistical model, although
the expected inputs do not match the top one candidate of the

statistical model, they are probably covered by other top candidates.
Therefore, the maximal value of multiple 𝐶𝑃𝑇𝑐𝑎𝑛𝑑 results of these
models is the same at most time. The Rectangle method fails to
generate more candidates out of the touching areas and needs more
touches to delete, re-input and complete the expected character,
which results in a lower 𝐶𝑃𝑇𝑙𝑖𝑠𝑡 value less than 1.

According to the statistics result, the major operations needed in
the data are correction, completion, and insertion (of apostrophe)
whose proportions are 14.18%, 8.86% and 4.04% respectively. In
comparison, there are only 0.28% samples need reordering and
0.08% samples need deleting. We can see that having the capacity
to insert a character into original input is also a major advantage
for a neural model comparing to the statistical model.

6 CASE STUDY
Table 2 demonstrates cases where auto-correction predictions are
different from that of Rectangle decision. The Rectangle baseline
fails in both making use of character-level context information and
completing the character sequences.

Table 2: Examples of top one candidate of differentmethods.

Rectangle Online Statistical Neural Expected
1 toda today today today today
2 perosn person person person person
3 fone gone fine fine fine
4 live love love live live
5 bit but but bit bit

Both the rule-based online solution and the statistical method
can generate candidates covering different situations including
completing (#1), reordering (#2) and replacing (#3-#5). However, we
find that the results of these two models are dominated by word
frequency. While the neural model can avoid some frequent words
that have a character far from the coordinate.

As discussed in Section 3, the neural framework has the capacity
of generating candidates whose lengths may be unequal to the
number of input touches. The input coordinate sequence is encoded
in the bidirectional GRU, and the decoder generates the candidate
characters without necessarily aligned to a particular touch.

Table 3: Examples of cases where the length of the predicted
sequence is not equal to the number of input touches.

Operation Rectangle Neural

Insertion theyre they’re
dont don’t

Deletion readyy ready
feell feel

Completion youn young
stopp stopped

Table 3 shows some cases where the proposed framework suc-
cessfully predicts the expected words whose lengths are differ-
ent with numbers of input touches. The learned patterns can be
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summarised as following functions. i): Insertion: The sequence-to-
sequence model can effectively learn to insert an apostrophe before
abbreviation. However, without the sentence-level context, it is still
difficult to decide whether an apostrophe should be added to the
sequence of ‘were’. ii): Deletion: The EOS symbols are predicted
when the already predicted characters compose a frequent word.
The redundant touch coordinate rarely influences the sequence
representation. iii): Completion: Un-inputted characters can be pre-
dicted uninterruptedly until the decoding result form a frequent
word. The network has learned to map the first few touches to
several possible longer candidates.

7 COMPATIBILITY ON MOBILE DEVICES
In real-world input method application, the memory cost of an
algorithm should also be taken into consideration. According to
the space occupied in the device, the distributable version of the
trained neural model requires only 8 megabytes of storage space
and hence easy to be transmitted. When loaded by the mobile de-
vices, 8-megabyte memory cost is fairly small compared to the
gigabyte-level random access memory (RAM) of nowadays mobile
devices. It is more memory-efficient than dictionary-based strate-
gies, such as the statistical model. The prefix-to-word dictionary in
direct translation strategy costs at least 25 megabytes of memory
to achieve adequate candidate coverage, let alone the additional
reverse dictionary if using the noisy-channel model.

The computational sources needed in the statistical model and
neural model are similar. The prefix-candidates size in the statistical
model and square of hidden size in the neural model are both at the
level of 10 thousand. Therefore, both methods achieve reasonable
average latency (less than 20ms per touch).

Finally, the framework can be deployed in devices with mobile
versions of deep learning frameworks. And the installation or up-
dating package (including trained models) is shippable through the
cellular network.

8 RELATEDWORKS
8.1 Input Efficiency Improving
Some recent works made use of context (by introducing n-gram
or other language models) or personalized information [13, 30, 32].
These features are proven to be helpful to improve user experience.
In this work, we focus on the situation with no word-level context
and personal information available. In this way, this paper has
discussed a framework that can be used with growing privacy
concerns. Hand postures and speed or pressure along a touch-trail
can also be important features [30]. The usage of such features is a
valuable direction of further improving the input efficiency.

Some works try to improve the user experience by generating
candidates with expert-edited correction operation and hand-craft
features [19]. Instead of enumerating the correction operation and
setting thresholds, the proposed models learn to score the candi-
dates with data-driven models. There are also works choose char-
acters with statistical criterion. The online system has made use
of Bayesian touch distance [5], while Zhang et al. [33] generate
candidates with a beam search on predicted character probabilities
and choose words with learning to rank models. In this work, we
take a different approach by adopting a unified neural end-to-end

framework, to handle insertion, deletion, completion, etc. It is also
obvious that one might be able to combine this work with [33] in a
real production system.

In addition, there are also researches focusing on the general
automatic correction problem including but not limited to the touch-
screen devices [12, 23]. Our work is different in that we implement
automatic completing in both the statistical model and the neural
model, which is rarely addressed in existing correction works. Be-
sides, we prove coordinate features bring more information than
characters and can be used to improve correction performance on
mobile devices. We should also mention that improving interac-
tive mode is another main research route [4, 6, 29]. Our proposed
framework is orthogonal to the new interactive modes and can be
used to further improve user experience.

8.2 Neural Networks
Wang et al. [28] address the principle of making minimal assump-
tions by end-to-end learn with a deep neural network. While recur-
rent based encoder-decoder with attention has been validated on
different tasks in various fields [2, 9] including translation, image
captioning and automatic reply generation [2, 24, 31]. This work
maps the two-dimensional coordinates to high-dimensional space
and introduces such a framework to predict final candidate words
based on one original input of touch coordinates.

Alsharif et al. [1] improve gesture typing with LSTM, which
brings inspiration to our work. Gesture typing is popular in many
countries/regions. On the other hand, Languages whose characters
are not on the keyboards (e.g., Chinese) are unfriendly to swiping.
Thus, we explore to improve typing experience for many related
users accustomed to typing whatever they input.

9 CONCLUDING REMARKS
In this paper, we have formally described the general task of map-
ping touch-screen coordinates to the candidate list. Setting the
input efficiency as the optimization objective, we have introduced
the neural sequence-to-sequence model with a beam search for
this task. The proposed framework takes the coordinate sequence
as input and generates scored candidates by handling replacing,
reordering, inserting, deleting and completing. We have presented
two metrics, corresponding specialization as well as the inconsis-
tency of the metrics according to the realistic scenes. To show the
effectiveness of the proposed framework, we provide a strong base-
line by implementing a statistical model with automatic correction
and completion. The proposed framework is evaluated with the
streaming input touches of real-world data on both metrics. The ex-
perimental result shows improvement over the baseline approaches
and effectiveness of the proposed model increasing input efficiency.
In future work, we will address topics like combination cases, per-
sonalizing and swiping-based input for further improvement.

Baidu’s IME products have very high DAU’s (daily active users).
The research of this paper was inspired while we collaborated with
Baidu’s product teams including Chinese IME product and Facemoji
multilingual IME product. Our prior work [33] has been successfully
deployed in the products. We are actively working on deploying
various research works including this paper and our new research
on learning to rank based on “abc-boost” tree algorithms [20, 21].
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